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ABSTRACT 

This paper is a research that deals with modeling and efficiency optimization of a Combined Gas and Steam 

Turbine (COGAS) using Multilayer Perceptron. Two different models are developed and compared by using 

both thermodynamics and a black-box based approach. They are implemented using the MATLAB tools 

including Simulink and Neural Network toolbox respectively. The power plant was modeled 

thermodynamically and implemented in MATLAB environment. A Simulink model was also constructed 

based on thermodynamic equations, implemented in MATLAB to generate the data used for training, 

validation and optimization of the power plant. The Multilayer Perceptron (MLP) model was set up by using 

the data sets generated from the simulink model and employed for the COGAS efficiency optimization. The 

results showed that both Simulink and MLP models are reliable and capable of satisfactory prediction of the 

optimized efficiency of the power plant above 60% with efficient training, parametric variation and iterative 

configuration of the MLP network. 
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1.  INTRODUCTION 

Combined gas and steam (COGAS) power plant is a 

system that utilizes the properties of two different 

power plants for power generation. The gas turbine 

(GT) exhaust temperature can be as high as 550oC. 

Interestingly, the steam turbines (ST) require high 

temperature source for steam generation. It thus 

makes sense to take advantage of the very desirable 

characteristics of the gas-turbine cycle high-

temperature exhaust gases as the energy source for 

the steam power cycle (1); (2). Combining thermal 

cycles with different working fluid is quite 

interesting because their advantages 

characteristically complement each other. 

Thermodynamically, when two thermal cycles are 

combined in a single power plant the efficiency that 

can be achieved is higher than that of one cycle 

alone and energy is conserved (3). Along with its 

wide and successful application in land-based power 

plants, the COGAS concept is being extended to 

provide an alternative form of power plant for ships 

(4). Optimization of industrial systems, such as the 

COGAS plant, is one of several conventional 

methodologies for improving the thermal efficiency 

as well as component design optimization, 

manufacturing, trouble shooting and maintenance. 

COGAS models can be categorized into two main 

groups which are the white-box and black-box 

models. Each of these approaches has its own 

characteristics, benefits, and limitations. White-box 

models are used when there is enough information 

about the physics of the system. They make use of 

dynamic equations of the system which are usually 

coupled and nonlinear (5). Artificial neural 

networks (ANN) as a black box model are used 

when there is little knowledge about the physics of 
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the system. In this case, there is no need to struggle 

with the complicated dynamic equations of the 

system (3); (5); (6). To develop a reliable black-box 

model, various multi-layer perceptron (MLP) based 

architectures have to be trained based on the values 

of different parameters of the system. Black-box 

methodology is employed to show the relationships 

between variables of the system using the measured 

operational data or data generated by means of a 

simulation tool (5); (6).  

Considering the role and importance of optimization 

in turbo machineries and its direct effect on COGAS 

performance characteristics, it therefore makes 

engineering sense for researchers to continue to 

work in this fascinating area to fill the existing 

knowledge and information gaps (7). Artificial 

neural network (ANN) has been employed in recent 

years as a powerful tool for modeling, simulation 

and optimization of complex industrial systems with 

linear and nonlinear dynamics like the COGAS 

plant. In this work, a SIMULINK model of a 

COGAS plant based on previous research by Rowen 

is briefly presented (8); (9); (10). This is used in 

MATLAB environment to generate the data set that 

is employed in MLP neural network architecture for 

training, validation and optimization. This work will 

deal with novel methodology for optimization of a 

COGAS plant thermal efficiency using ANN-based 

MLP architecture. 

2.0  METHODOLOGY 

The modeling and optimization of the COGAS 

plant is implemented utilizing the approach stated 

below: modeling the COGAS plant using 

thermodynamic analysis, SUMULINK modeling of 

the COGAS plant implemented in MATLAB 

environment to generate operational data for the 

training and optimization of the COGAS plant using 

ANN-based MLP architecture.  

2.1 Thermodynamic Model of the COGAS 

For the purpose of this research, fig. 2.1 shows the 

schematic diagram of the COGAS plant used for the 

modeling. 

 
 

Fig. 2.1 Schematic diagram of a COGAS plant 

Scource: Ogbonnaya, 2004 

The modeling will be carried out in stages for 

Mathematical convenience and clarity. 

2.1.1  Modeling the GT Section  

In the GT cycle (topping cycle) as shown in fig. 2.1, 

the air is compressed from state 1 to 2 in the 

compressor where its temperature rises from    T1 to 

T2. According to (1); (11), the work done in the 

compressor is given by: 

  𝑊𝑔𝐶 = 𝑚𝑎𝐶𝑝𝑎
(𝑇2 − 𝑇1)    (2.1) 

          =  𝑚𝑎𝐶𝑝𝑇1(
𝑇2

𝑇1
−  1)                  (2.2) 

But the pressure ratio is given by the expression 

below; 

      
 𝑇2

𝑇1
= 𝑃𝑟

(
𝛾−1

𝛾
)
     (2.3)  

Considering the pressure ratio of the turbine, 

equation (2.1) becomes 

𝑊𝑔𝑐 = 𝑚𝑎𝐶𝑝𝑇1 (𝑃𝑟
(
𝛾−1

𝛾
)
−  1)             (2.4) 
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The expression for the work done, 𝑊𝑔𝑡 by the 

turbine is: 

𝑊𝑔𝑡 = 𝑚𝑎𝐶𝑝(𝑇3 − 𝑇4)   (2.5) 

According to (12), the efficiency of the gas turbine 

is: 

 𝜂𝑔𝑎𝑠.𝑡𝑢𝑟 = 

𝑚𝑎𝐶𝑝(𝑇3− (
𝑇3

𝑃𝑟
(
𝛾 − 1

𝛾
 )
)) − 𝑚𝑎𝐶𝑝𝑇1(𝑃𝑟

(
𝛾−1
𝛾

)
− 1) 

𝑚𝑎𝐶𝑝(𝑇3−𝑇1𝑃𝑟
(
𝛾−1
𝛾

)
 )

  (2.6)  

 

 

𝜂𝑔𝑎𝑠.𝑡𝑢𝑟 =

[(𝑇3− (
𝑇3

𝑃𝑟
(
𝛾 − 1

𝛾
 )
))−𝑇1(𝑃𝑟

(
𝛾−1
𝛾 )

− 1) ]

(𝑇3−𝑇1𝑃𝑟
(
𝛾−1
𝛾 )

 )

  (2.7) 

According to (1); (10); (12), the net work done by 

the ST as shown in fig. 2.1 is given by the 

expression: 

𝑊𝑛𝑒𝑡.𝑠𝑡𝑒𝑎𝑚 = 𝑊𝑠𝑡 − 𝑤𝑃   (2.8) 

Equation (2.8) can be written as; 

𝑊𝑛𝑒𝑡.𝑠𝑡𝑒𝑎𝑚 = 𝑚𝑠(ℎ8 − ℎ9) − 𝑚𝑠(ℎ7 − ℎ6)  (2.9) 

Therefore, the ST cycle efficiency will be given by; 

𝜂𝑠𝑡 =
𝑚𝑠[(ℎ8−ℎ9)−(ℎ7−ℎ6)]

𝑚𝑠(ℎ8−ℎ7)
                    (2.10) 

From (12), the net efficiency of the combined cycle 

can be obtained from the expression: 

𝜂𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
(𝑊𝑛𝑒𝑡.𝑔𝑎𝑠+𝑊𝑛𝑒𝑡.𝑠𝑡𝑒𝑎𝑚)

𝑄𝑠𝑔
            (2.11) 

𝜂𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

[
 
 
 
 
 

 

[𝑚𝑎𝐶𝑝(𝑇3− (
𝑇3

𝑃𝑟
(
𝛾 − 1

𝛾
 )
)) − 𝑇1(𝑃𝑟

(
𝛾−1
𝛾

)
− 1)]+𝑚𝑠[(ℎ8−ℎ9)−(ℎ7−ℎ6)]

𝑚𝑎𝐶𝑝(𝑇3−𝑇1𝑃𝑟
(
𝛾−1
𝛾

)
 )

]
 
 
 
 
 

   (2.12) 

The Simulink Model  

Fig. 2.2 shows a dynamic model of a COGAS plant 

for a single shaft system. This model consists of 

several blocks describing various parameters to be 

trained and validated in order to optimize the 

performance of the system. There are blocks related 

with speed/load, temperature control, fuel control, 

air control and other blocks for gas turbine, waste 

heat recovery boiler/steam turbine, rotor shaft, and 

temperature transducer making up a complete 

COGAS plant.  

The speed/load block (governor) for determining the 

fuel supply V
d 

when compared with a reference load 

and rotor speed deviation (13). The temperature 

control block (overheat control) is for controlling 

the exhaust temperature (T
4
) of the gas turbine. The 

measured temperature is obtained with the help of 

various transducers and compared with a reference 

temperature. Then the output of the temperature 

control is combined with speed/load control to 

determine the fuel demand that is, using low 

selected values.  

The performance of the fuel control block is 

according to the minimum value provided by the 

speed/load control and temperature control. This 

determines the fuel flow M
f
. Air control block in the 

model is used to adjusting the air flow rate in the 

gas turbine (GT). This help in obtaining the required 

exhaust temperature in order to maintain the 

temperature below a referenced temperature using 

suitable offset. All the parameters of the COGAS 

used in the model are given in Table 2.1.
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Fig. 2.2 Simulink Model of Combined Gas and Steam Power Plant 

               Source: Rai et al. 2013 

2.2 Designing and Programming the MLP Model 

MLP is one of the most useful neural networks in 

function approximation and prediction. Many 

design parameters can be determined by trial and 

error when working with MLP. A network of two 

layers that is used in this work and shown in fig. 

2.3, where the first layer is sigmoid and the second 

layer is a purlin, can be trained to approximate any 

function arbitrarily well (14). These functions are 

differentiable and can cope with nonlinearity of 

industrial systems.  

 

 

Fig. 2.3 MLP network with two layers 

Source: Beale et al, 2011 

 

 

2.2.1 Data collection 

The data required for the MLP modeling were 

obtained from the SUMULINK model of the 

COGAS plant programmed and implemented in 

MATLAB environment to generate the required 

inputs data set for the MLP training, validation and 

COGAS optimization. 

2.2.2 Creating, configuration and Training the 

network  

This stage involves specifying the neural network 

to be used, the number of hidden layers, neuron in 

each layer, transfer function in each layer, training 

function, weight/bias learning function and 

performance function (15). In this context, the 

MLP neural network is used with two hidden 

layers. 

During the training process, the weights are 

adjusted in order to make the actual outputs 

(predicted) close to the target output of the network 
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(16); (17). In this work, the generated data of the 

COGAS plant are used for the training.  

The back-propagation training algorithm is used in 

updating the weight and bias of the MLP network. 

MATLAB provides in-built transfer functions like 

the: Log-sigmoid, tan-sigmoid and purelin transfer 

as used in this work.  

2.2.3 Programming and MLP code generation  

 In this paper, MATLAB (R2016a) is used to write 

script files for developing MLP-ANN models and 

performance functions for calculating the model 

performance error using the mean square error 

(MSE). Table 2.1 and Fig. 2.3 show the COGAS 

input parameter and flow chart to develop the MLP 

model and optimization respectively.  

A comprehensive computer code was generated 

and run in MATLAB for a two-layered MLP 

network consisting of different configurations to 

obtain a maximally trained and optimized MLP 

structure that will ensure good generalization 

characteristic of the COGAS model. Fig. 2.3 

provides a detailed and lucid description of MLP 

code generation for COGAS optimization process.  

The results of all the performances of the network 

are recorded and sorted on the basis of their 

measure-MSE performance. In this study, three 

thousand epochs was considered for the entire 

training process of the MLP network. This is to 

ensure that the training would reach a dominating 

local minimum before stopping, from which the 

optimal MLP model was identified from the sorted 

results. 

 

 

 

 

 

 

 

 

Table 2.1: COGAS Input Parameters for the 

MLP-based Optimization 

Parameters  Sym Unit Operational 

Range 

GT compressor 

inlet temperature 
𝑇1 K [268; 271.5] 

GT compressor 

inlet pressure 

P1 Bar [1.01325; 8.0325] 

GT pressure ratio Pr - [11.5; 15.5] 
GT inlet 

temperature to 

the turbine 

T3 K [1750; 1850] 

GT air mass flow 

rate 

ma Kg/sec [67.9268; 77.9268] 

GT fuel mass 

flow rate 

mg Kg/sec [0.00367; 0.2661] 

ST steam mass 

flow rate 

ms Kg/sec [50.79; 60.75] 

ST enthalpy 

before entering 

the pump 

ℎ6 KJ/kg [174.0; 194.0] 

ST enthalpy after 

the pump 
ℎ7 kJ/kg [182.06; 202.0] 

ST enthalpy after 

the boiler 
ℎ8 kJ/kg [3398.0; 3599.0] 

ST enthalpy after 

the turbine 
ℎ9 kJ/kg [2102.8; 2302.8] 

ST inlet 

temperature 

T5 K [500.0; 550.0] 

ST boiler 

pressure 

P5 Bar [80.0; 100.0] 

Specific heat 

capacity of air 

Cp kJ/kgk [1.005; 1.010] 

Ratio of specific 

heat 
𝛾 - [1.35; 1.44] 

ST Condenser 

pressure 

P6 Bar [0.07;0.10] 
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Fig.2.3: Flow Chart of Generated MLP Code for 

COGAS Plant Optimization 

3.0  Results Presentation and Discussion 

To obtain an optimized network structure and to 

ensure a good optimization of the COGAS model, 

a comprehensive training of a two-layered MLP 

network in MATLAB environment was carried 

out. Different MLP structures were trained using 

partitioned data sets for training, testing and 

validation purposes. In this work, three thousand 

epochs was considered for the whole training 

process of the MLP-based architectures, to be sure 

that the training would not be stopped before 

reaching a dominating local minimum.  

 

The results of the trainings were recorded and the 

performance was evaluated and compared in terms 

of their mean square error (MSE). Optimal MLP 

with minimum MSE was selected and tested again 

to ensure good generalization characteristics of the 

optimized COGAS model. The results from the 

model for different parameters of the MPL were 

compared and are presented in Table 3.1 

Table 3.1 Best Performance for Different MLP 

Configurations 
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(M
S

E
) 

Trainlm 16-5-1 Tansig Logsig 628 6.1187e-09 

Traindg 16-5-1 Logsig Tansig 321 4.6278e-10 

Traingm 16-10-1 Logsig Tansig 285 4.0652e-10 

Trainlm 16-10-1 Tansig Purlin 206 3.2923e-10 

Trainbr 16-20-1 Tansig logsig 816 2.0056e-11 

Traingd 16-20-1 Pursig Logsig 370 2.1941e-10 

Trainlm 16-30-1 Logsig Purlin 459 1.7856e-10 

Trainlm 16-40-1 Losig Purlin Nil Nil 

 

Table 3.1 indicates the best performance in terms 

of different MLP structures and training functions. 

It is observed that a two-layered MLP structure 

using training function: trainlm, transfer functions: 

lagsigs for hidden and purlin for the output layers, 

with 30 neurons showed the best performance. 

 Fig 3.1 show the screen capture for the MLP 

model of the COGAS with 16 input parameters, 

hidden layer with 30 neurons, output layer with one 

neuron and one output which represent the 

optimized COGAS thermal efficiency. 
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Fig. 3.1 MLP Model of the COGAS Plant 

Detail of the most optimal trained network based 

on performance of all the trained structures is 

shown in fig.3.2. Performance of the MPL for 

training, validation and testing are indicated by the 

curves. From the graph, the epoch in which the 

validation performance error reached the minimum 

is 459. This point gives the lowest MSE 

performances value of 1.7856e-10. 

 
Fig. 3.2 Performance Curve of Optimal MLP 

Network 

The related regression plot for this MLP structure 

after training is shown in fig. 3.3. This gives an 

indication of the relationship between outputs of 

the network and the outputs of the system (targets). 

As shown by the figure, the R values for all the 

graphs are between 0.99999 and 1. This result for 

each of training, validation and testing data sets 

indicates a very good fit. 

 

 

 

Fig. 3.3 Regression of the Optimal MLP Network 

4.1 Conclusion  

In this research work, thermodynamics analysis 

and SIMULINK were employed to model the 

COGAS plant. A comprehensive computer 

program code was developed and run in MATLAB 

environment. The data generated from the 

SIMULNK model of the COGAS plant in 

MATLAB environment were employed in a two-

layered MLP structure for optimization purposes. 

A method which involves data validation has 

evolved in this wok. 

The results obtained based on this research work, 

showed that the epoch in which the validation 

performance error reaches the minimum is 459 and 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 11, Issue 3, March-2020                                                                                 834 
ISSN 2229-5518  

IJSER © 2020 

http://www.ijser.org 

the regression value ranges between 0.99999 and 1. 

Similarly, the network simulation yielded an 

overall thermal efficiency above 60%. The results 

are evident to conclude that a proper MLP 

configuration and iteration enhance the 

improvement of the training performance and 

optimization characteristics of the COGAS system. 

It also identified the fact that modeling, simulation 

and analysis can be handled using MLP to produce 

results with a high degree of accuracy and 

reliability.  
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